Skip to content Skip to navigation

Here, we extended the point-particle approximation by accounting for the finite-size of the dispersed phase. We validate this model by simulating capture Poisuille flow with solid particles arranged at the bottom of the channel (DNS by Choi & Joseph, JFM

Here, we extended the point-particle approximation by accounting for the finite-size of the dispersed phase. We validate this model by simulating capture Poisuille flow with solid particles arranged at the bottom of the channel (DNS by Choi & Joseph, JFM 2000). The standard point-particle approach does not predict any lift force on the particles and the particle layer moves in laminar layers. The finite-size model leads to Kelvin-Helmholtz type instability in the gas-phase velocity and lift of particles similar to the DNS. See Apte, S.V., Mahesh, K., & Lundgren, T., 'A Eulerian-Lagrangian model to simulate two-phase/particulate flows,' Annual Research Briefs, Center for Turbulence Research, Stanford, 2003