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A scalable geometric multigrid method for
non-symmetric linear systems arising

from elliptic equations

By M. Esmaily-Moghadam, L. Jofre, G. Iaccarino AND A. Mani

1. Motivation and objectives

Elliptic partial differential equations (PDE) are commonplace in physics. A few exam-
ples range from heat transfer in solids to the effect of pressure in incompressible flows
with variable density. Solutions to these PDE systems, under various boundary conditions
as well as geometries, are not often available analytically. As a result, various numerical
methods have been adopted to discretize the problem in space and time and to reduce
it to a system of linear equations. Solving these systems remains a challenge, because
scientific and engineering applications are continuously growing in size, demanding more
efficient solvers (Saad 2003; Shakib et al. 1989; Saad et al. 1998; Esmaily-Moghadam
et al. 2013, 2015a,b).
In a common PDE solver, a large portion of the computational cost is dedicated to

solving the underlying linear system. These linear systems have a typical size of over
hundreds of thousands of unknowns. Since direct methods are of O(Np) with N be-
ing the number of unknowns and p generally greater than 1.5, they quickly become an
unattractive option in terms of computational cost (Saad 2003). To offset the cost, iter-
ative methods are generally favored in these applications. The high computational cost,
however, remains a critical issue in solving linear systems obtained from the Poisson
equation (a subset of elliptic PDEs). This high cost is caused by the dependency of the
local solution on the solution of the entire domain. In this class of problems, the entire
domain is affected by a perturbation at any arbitrary point in space. This strong coupling
introduces several challenges in terms of ill-conditioning of the linear system as well as
designing efficient parallel algorithms.
The ill-conditioning becomes a pressing issue as the size of the system increases (Saad

2003). To explain this in simple terms, consider two fixed points in space that are at the
location of two unknowns on the discrete setting. The number of unknowns between these
two points varies proportional to the total number of unknowns. Considering the intrinsic
characteristic of the iterative methods, in which at each iteration information is propa-
gated from a point to its neighbors, the number of iterations required for propagation of
information between two points increases proportionally with the total number of grid
points, i.e., the size of the system. This effect, that is also referred to as ill-conditioning
of the linear system, leads to a scaling versus size worse than O(N) in iterative solvers.
Although techniques based on Fourier transformation, which are of O(N) log(N), do not
encounter this challenge, their applicability is limited to only symmetric systems with
very simple geometries and boundary conditions. Another effective technique to tackle
this issue is the multigrid approach, which can be divided into two classes: algebraic and
geometric (Wesseling 1995; Vaněk et al. 1996; Ghia et al. 1982). The algebraic multigrid
techniques, although applicable to a wider range of linear systems, are often less robust,
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more complex to implement, and less efficient than the geometric counterpart. The geo-
metric multigrid methods, on the other hand, are well suited for applications with simple
geometry that are large enough in size to justify the added complexity.
In this study, we target a class of systems that arise from a specific physical problem.

The underlying physical problem is flow in a duct, which is a cuboid domain with walls
on four sides and an inflow-outflow boundary conditions on the third direction. Point
particles are dispersed in the flow and the entire apparatus is subjected to radiative
heating, causing temperature and density variations. The Navier-Stokes equations are
formulated based on the low Mach assumption, leading to a variable density, but incom-
pressible governing equations. Using a fractional time-stepping method, the conservation
of mass is satisfied by correcting the velocity field through solving a linear system (Jofre
et al. 2014). This linear system, as a result of density variation and grid non-uniformity,
is not symmetric. For accuracy and cost considerations, the grid is refined near the walls,
leading to a wide spectrum of cell sizes that translates to a linear system with diago-
nal entries varying significantly. Therefore, the objective of this study is to design an
efficient and scalable linear solver for a non-symmetric linear system obtained from an
elliptic operator on a cuboid domain. We target systems with up to a billion unknowns, a
typical size for direct numerical simulation. Based on the earlier discussion, the geometric
multigrid method is well suited for this class of problems, considering the simplicity of
cuboid geometry and the size of the linear system.
The massive size of the linear systems under consideration mandates the use of parallel

computations. The main challenge here is to design an algorithm that scales up to a large
number of processors without significantly losing parallel efficiency. The design of such
an algorithm is fully intertwined with the underlying iterative method, because a scalable
algorithm minimizes processor-to-processor communications and maintains a good load
balance on all processors. A multigrid technique that relies on a static partitioning of a
stretched grid can encounter load imbalance on coarser levels. To address these challenges,
we will discuss a partitioning approach for the introduced geometric multigrid technique.
This paper is organized as follows. First, we present a geometric multigrid technique

for stretched grids that relies on a mapper between non-uniform and uniform grids,
and discuss a recursive implementation of this algorithm for optimal convergence. Then,
we introduce our partitioning approach, designed for improved parallel scalability. To
benchmark our method, we compare it against a multigrid technique from the Trilinos
package (Hestenes & Stiefel 1952; Heroux et al. 2005) and conventional Krylov-based
iterative methods. In Section 4 we present: (1) triply periodic isotropic turbulence on
uniform grids, and (2) variable density duct simulations on non-uniform grids. We present
weak and strong scaling results to establish the parallel performance of our method.
Finally, we draw conclusions in Section 5.

2. A geometric multigrid method

In this section, we discuss our geometric multigrid method, which includes restriction
(fine-to-coarse) and interpolation (coarse-to-fine) operations, a recursive implementation
of the multigrid method, and the main algorithm. In what follows, roman superscripts
are used to denote variable names and italic subscripts are used as indices. Superscripts
c and f are used to denote variables on coarse and fine grids, respectively. Indices i, j,
and k are used for fine, and I, J , K are used for coarse grid.
The multigrid technique tackles the ill-conditioning issue by reducing the number of
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grid points in all directions, thus reducing the number of iterations required for the
propagation of information. Hence, given the linear system defined on a fine grid

Afxf = bf , (2.1)

the objective is to solve an equivalent system on a coarse grid as

Acxc = bc, (2.2)

such that the difference between xc and xf is minimal in a physical sense. To obtain
Eq. (2.2) from Eq. (2.1), one needs to map bf to bc and define Ac such that solutions to
both systems are similar. To achieve this goal, we take the PDE that produces Eq. (2.1)
and re-discretize it on a coarse grid. This process reduces to two core operations, which
are mapping a field from the fine grid to the coarse grid and vice versa. We denote
the former (restriction) by C and the latter (interpolation) by F . Exploiting these two
operators, the right-hand side (RHS) of Eq. (2.1) is mapped to the coarse grid using

bc = C(bf), (2.3)

and the solution to Eq. (2.2) is mapped back to the fine grid using

xf = F(xc). (2.4)

We denote the cardinality of a set or vector by |•|, F : R|xc| 7→ R
|xf | and C : R|bf | 7→ R

|bc|.
The left-hand side matrices in Eqs. (2.1)-(2.2) are discrete non-symmetric elliptic op-

erators. In a continuous form, they represent a class of PDEs as

∇ · (κ∇T ) = q, (2.5)

which fits to the heat equation in a solid with variable material property, κ, under
volumetric heating, −q, and temperature, T . The heat equation is chosen to provide a
physical intuition. It directly translates to the equation solved for satisfying the continuity
equation in flow with variable density by replacing T with pressure, κ with the inverse
of density, and q with the divergence of uncorrected velocity field plus the contribution
from the energy equation. Denoting the discrete form of an elliptic operator on grid G
for a given κ by Dκ{G}, by definition

Af = Dκf{Gf}. (2.6)

Through numerical experiments, in which we considered various combination of calcu-
lating Ac directly from Af and the underlying PDE itself, we found that

Ac = Dκc{Gc} (2.7)

provides a good estimate of an optimal Ac. Specifically, an optimal Ac, given arbitrary
non-singular Af and b

f , can be potentially defined as

argminAc

∥

∥

∥
(Af)−1bf −F

(

(Ac)−1C(bf)
)∥

∥

∥
. (2.8)

Before proceeding any further, it is necessary to exactly specify operators C and F .
To satisfy conservation of energy (or mass), one needs to ensure that the integral of q
in Eq. (2.5) over the entire computational domain is preserved. In a discrete setting,
this constraint translates to a similar condition on C pertaining to Eq. (2.3). To ensure
this constraint is satisfied on any interval, we enforce it on all grid points, i.e., bcI with

I ∈ {1, · · · , |bc|}. This is accomplished by summing bf over all the cells that overlap with
bcI . This is schematically shown for a one-dimensional grid in Figure 1.
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Figure 1. One-dimensional mapping of a field b between a fine (top/green) and a coarse
(bottom/red) grid.

Based on Figure 1, defining wI,i as the fraction of length of cell i that overlaps with cell

I, C operator turns into a multiplication by matrix w in one dimension, i.e., bc = wbf .
Note that wI,i ≥ 0 and wef = lc, where lc is an array that contains the length of coarse

grid cells and ef is a vector with one at all its entries defined on Gf . Also, wTec = lf , in
which lf is an array that contains length of coarse grid cells. These two properties are a
direct consequence of the fact that the integral of a quantity is preserved by w.
In three dimensions, w is extended to three matrices, wx, wy, and wz for x, y, and z

directions, respectively. C results into three summations as

C(bf)IJK = bcIJK =
∑

i

∑

j

∑

k

wx
I,iw

y
J,jw

z
K,kb

f
ijk. (2.9)

In Eq. (2.9), each summation must be carried out on a limited number of overlapping
cells; hence, the computational cost remains as O(|bf |).
Operator F is also defined and extended to three dimensions in a similar manner. The

only difference is that w is normalized by lf in this case. Defining

ui,I =
wI,i

lfi
, (2.10)

in one dimension we have bf = ubc, and in three dimensions

F(bc)ijk = bfijk =
∑

I

∑

J

∑

K

ux
i,Iu

y
j,Ju

z
k,KbcIJK , (2.11)

in which ux, uy, and uz are the corresponding weights for x, y, and z directions, respec-
tively. Note uec = ef , viz. a field on Gc with constant value is mapped to a constant
value on Gf .
Conventionally, multigrid methods have a preset pattern of restriction and interpo-

lation. The most common patterns are V cycle, i.e., m restriction followed by m inter-
polation, and W cycle, i.e., m levels of restriction followed by m̃ ≤ m interpolation, m̃
restriction, and m interpolation. The performance of each of these methods depends on
the quality of the solution on the coarser levels. For one class of problems, one cycle
of restriction might be sufficient, while for another, several cycles might be necessary.
Therefore, to achieve an optimal performance, we do not preset a pattern, but rather
allow it to be determined dynamically (see Figure 2). This is achieved by adopting a
recursive implementation. The goal of this algorithm is to optimally solve a linear sys-
tem at any given level, regardless of the number of previous restrictions. Achieving this
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Figure 2. Dynamic pattern of multigrid restriction and interpolations for two representative
cases. Blue is a uniform 1283 grid and red is a non-uniform 120× 80× 80 grid.

objective at any level (including the coarsest level), by recursion, the entire algorithm
would be optimal.

A second important factor for achieving an optimal performance is to ensure smooth-
ing operations, viz. reducing residuals at any given level including the coarsest level, are
also optimal. The Krylov-based iterative methods, namely the conjugate gradient (CG)
for symmetric matrices and the bi-conjugate gradient (BCG) for non-symmetric matri-
ces, are among the most efficient smoothing techniques. Therefore, we use the CG and
BCG for symmetric and non-symmetric matrices, respectively. Experimenting with other
smoothing techniques such as Gauss-Seidel technique has confirmed near optimality of
our choice of smoothers.

In general, the CG outperforms the BCG. Exploiting this to maximize the performance,
we ensure all restriction operations lead to a symmetric matrix. This way, the BCG is
only used to solve a given non-symmetric matrix at the finest level, i.e., smoothing of the
original system. To ensure a restriction operation leads to a symmetric matrix, we build
the coarse grid such that it is uniform in any given direction, i.e., lci = lc, in which

lc ≡ |lc|−1
∑

i

lci (2.12)

is the average grid size. Note that |lc| and
∑

i l
c
i are equal to the number of grid points

and the total length of the domain, respectively. Through numerical experiments, we
found that the best restriction strategy is to increase the average grid size at maximum
by a factor of two in each direction such that the average grid size in all directions merges
to the same value. On a highly stretched grid this translates to significant coarsening to
no coarsening (or even refining) on different segments of the grid. This strategy, however,
remains superior in comparison with a coarsening strategy that ensures similar degree of
coarsening in the entire domain. Mathematically, given the average grid size of the fine

grid in x, y, and z directions as, lf,x, lf,y, and l
f,z, respectively, we define a target coarse

grid size as

∆ ≡ 2min
(

lf,x, lf,y, lf,z
)

. (2.13)

Setting the size of the grid to ∆ in all directions can lead to refinement in the direction

with the largest lf . Hence, lc in each direction is determined based on max
(

∆, lf
)

. More
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specifically,

lc,x = max
(

∆̃x, lf,x
)

, (2.14)

in which ∆̃x is the nearest value to ∆ with
∑

i l
f,x
i /∆̃x ∈ N. Equations similar to Eq. (2.14)

can also be written for lf,y and lf,z.
We next put together all these components to build a multigrid algorithm. The main

problem is defined as: given A, b, and ǫ, find x such that ‖Ax− b‖ ≤ ǫ. First, let
A = {A0,A1, · · ·Ammax} be a set of matrices in whichA0 = A,Ai is the matrix obtained
from i consecutive restriction operations (Eq. (2.7)), and mmax is the maximum number
of multigrid levels. Note Ai relative to Ai+1 is analogous to Af relative to Ac with their
relationship fully described above. Additionally, we define function K(Ã, b̃, nmax) to be
an iterative solver (the CG for a symmetric and the BCG for a non-symmetric Ã) that
returns x̃ as the solution to Ãx̃ = b̃ with a tolerance ǫK and a maximum number of
iterations nmax. Now, we define a recursive multigrid function M

(

A, b̂,m
)

that returns

x̂ as the solution to Amx̂ = b̂ with a tolerance ǫ. With this definition, it is clear that
x = M(A, b, 0) is the solution to the original problem. In this setting, operator M is
defined in details in Algorithm 1 in Appendix.
Note that the maximum number of iterations of the iterative solver at the coarsest

level, when m = mmax, is ñmax as opposed to nmax with ñmax ≫ nmax. This is to ensure
the solution to the coarsest problem converges properly before return. In other words,
two later calls to K are smoothers while the first call is for solving a linear system. Also,
note the recursive call to the next level of the multigrid solver inside the while loop. To
prevent an infinite loop, one may add a counter that calls an exit command in case of
excessive iterations.

3. Partitioning approach

The scalability of an iterative algorithm is primarily a function of its communication
overhead and load balance. The communication overhead is directly proportional to gran-
ularity of the partitioning, which is the ratio between the number of cells shared between
processors to the total number of cells. The load balance relies on an equal distribution
of the number of cells between processors. Partitioning the grid to equal-size cubes with
an equal number of cells in each direction is an optimal choice with regard to both the
communication overhead and load balance. However, this is not possible for a given grid
with an arbitrary number of cells in combination with utilization of an arbitrary number
of processors. Hence, a compromise must be made between these two factors.
To improve flexibility and increase the number of partitioning combinations, we create a

partition-grid † with each of its block having different sizes. This is to obtain an algorithm
that remains optimal for a wider combination of grids and number of processors. As a
one-dimensional illustration, consider a grid with 10 cells. A partitioning strategy that
only allows for equal-size partitions, only accepts the number of processors to be 1, 2,
5, or 10. In three dimensions, such a restriction significantly limits the range of possible
partitioning options. With this limitation lifted, the average number of grid points in a
direction, denoted by ni, can be a positive real number, i.e., ni ∈ R

+ ∀i ∈ {1, 2, 3}, and
not necessarily an integer.

† A partition-grid is a rectilinear grid of partitions that is constructed by dividing the com-
putational grid into a certain number of slices in each direction.



A scalable multigrid method for elliptic linear systems 217

To calculate ni, we first decompose the number of partitions, denoted by np, to prime
numbers

np =
∏

i

pki

i , (3.1)

in which p = {2, 3, 5, 7, 11, 13, 17, 19} is a truncated sequence of prime numbers, and
ki ∈ N is the calculated repetition associated with each prime number. Given p and k,
and the total number of grid points in each direction, |l|, n is calculated via Algorithm
2 in Appendix. For example, a 300× 200× 100 grid partitioned to np = 30 will produce
n = {60, 66.667, 50}, viz. partitioning x-direction to 5, y-direction to 3, and z-direction
to 2. In y-direction, this leads to slices with a thickness of 67, 67, and 66 grid points,
hence committing a negligible load imbalance of 1.5%.
Each of the mmax grids that are generated is separately partitioned according to the

algorithm described above. These independent partitions, specifically for a non-uniform
grid, can be significantly misaligned at each level of the multigrid method. This has a
direct implication on the implementation of C and F in terms of processor-to-processor
communication. To simplify such implementation, we perform each of those operations
in three steps. In the first step, considering C for example, values from the fine grid
are aggregated into a buffer according to Eq. (2.9). Second, the buffer is communicated
between processors, and third, it is assigned to the coarse grid. Using a buffer simplifies
treatment of boundaries, specifically when multiple cells, each from a different partition,
contribute to a single coarse grid cell.
Finally, we note that in the case of large mmax and np, there can be excessive number

of processors for solving a small system at the coarsest grid. To prevent this issue, we
impose a lower bound on n (10 in our calculations), hence ensuring that there is always
a minimum number of grid points per processor as the grid becomes coarser. Therefore,
some processors can be idle when calculations are performed on the coarser grids, yet this
has minimal effect on the overall performance due to the negligible cost of coarse grid
calculations. Among others, this lower bound depends on the communication latency of
the hardware, hence must be calibrated for each cluster. However, in fixing this parameter
in all our calculations on various machines, we have not observed a significant change in
the overall performance.

4. Results

The parameters of the multigrid method, described in Section 2, are kept fixed for
all the results reported in this section. The maximum number of restriction levels is
mmax = 4. Increasing this number to 3, 5, or 6 has a minimal effect on the results. The
tolerance of the solution is ǫ = 10−7. Decreasing or increasing this value will only shift
the absolute computational costs, hence our final conclusion is not affected by this value.
The maximum number of iterations at the coarsest level is ñmax = 500. This number is
much larger than the actual number of iterations, hence, as long as a large value is used,
no effect on the result is expected. The maximum number of iterations of the smoother is
nmax = 8. The reported results can be moderately affected by this parameter; however,
the change in the performance is minimal for 4 ≤ nmax ≤ 10. The tolerance of the
smoother is ǫK = 0.15. This parameter can also moderately affect the results; however,
0.15 is nearly optimal for a wide range of tested cases.
Two sets of cases are studied in this section. The first is the direct numerical simu-

lations of isotropic homogeneous turbulence in a cubic box. In these cases, the grid is
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uniform in all directions and density (κ in Eq. (2.5)) is constant. These cases test most
of the components of the algorithm under simplified conditions. The second is the di-
rect numerical simulation of a radiated particle-laden flow in a duct with square cross
section. In these cases, the grid is not homogeneous in y- and z-directions, in which
cells near the wall have a much smaller li in comparison with those at the duct center.
max(ly)/min(ly) ≈ 15, ly/min(ly) ≈ 7, and lx/min(ly) ≈ 25. The domain is cuboid with
an aspect ratio of 6× 1× 1. The number of grid points of the finest grid in x-direction is
1.5 times of that of y- or z-direction. For each of these two classes of problem, we ensure
that the flow is sufficiently evolved in time such that all wave numbers are present in the
RHS of the linear system.

All of the results reported here are obtained from calculations on Titan. Briefly, Titan
contains 18,688 compute nodes, each containing a 16-core 2.2GHz AMD Opteron 6274
processor and 32 GB of RAM. Two nodes share a Gemini high-speed interconnect router.

To benchmark our results, we repeated some of the above calculations using the Trilinos
software project (Heroux et al. 2005). For these cases, the same linear systems employed
for testing our algorithm were loaded to the Trilinos. To set up the problem, pre-existing
template files, found in the library’s documentation, are used. The pre-installed Trilinos
library on Titan (version cray-trilinos/11.12.1.3) is used in our calculations. The multi-
grid and CG solvers from Prokopenko et al. (2014) and Bavier et al. (2012) packages,
respectively, are used for benchmarking our results. The adjustable parameters are tuned
based on the recommended criteria. In particular, we set the problem type to Poisson-
3D for the multigrid solver, and we followed performance indications for parallel runs.
Namely, the Chebyshev polynomial is used as the smoother with a V cycle pattern, as
recommended by Trilinos for Poisson linear systems. With these options, as will be shown
in the following, the Trilinos multigrid solver scaled poorly on more than 4 nodes (64
processors). We note that these results are obtained based on the best combination of
parameters that we were able to find by exploring the parameter space. This does not,
however, suggest that there is no combination of parameters that could produce better
results.

The direct numerical simulation of isotropic turbulence on a uniform 2563 grid is per-
formed using the present multigrid method and the results are compared against the CG
(Figure 3) and the Trilinos multigrid solver (Figure 4). Based on Figure 3, the presented
multigrid method is over an order of magnitude faster than the two implementations of
the CG. In a practical sense, performing the same simulation without use of the multigrid
technique entails approximately 10 times increase in cost. On a larger grid, this ratio will
increase.

At a higher number of processors, communications latency becomes a significant por-
tion of the cost for the multigrid method. This leads to a lower cost ratio at higher
number of processors in Figure 3. The higher and lower cost of CG-I in comparison with
CG-T at a lower and higher number of processors, respectively, shows that our in-house
implementation scales better in comparison with Trilinos’s. The scalability of the present
multigrid method relies heavily on the scalability of its underlying linear solver, i.e., the
CG-I. Therefore, the superior scalability of the CG-I also explains the better scalability
of the present multigrid in comparison with that of Trilinos, which has led to a rising
trend in Figure 4. Employing the present multigrid instead of Trilinos’s for computations
with an intermediate number of processors (50 to 100 k cells in each partition) entails
approximately 3 times reduction in cost.

The strong scalability of the present multigrid on the same 2563 grid is shown in
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Results are related to the isotropic turbulence simulation on a 2563 grid.

Figure 5. An almost linear speedup is obtained up to 1012 processors, where there are
16,000 cells per partition. Compared to the case with 16 processors, the overall speedup
is approximately 38 times.
To show scalability of the present multigrid method on a wider range of grid sizes, we

performed a weak scaling study in which the number of cells in each partition is held
fixed as the number of partitions is increased. These results, which are also based on the
simulations of isotropic turbulence on uniform grids, are presented in Figure 6. Two sets
of results are presented in which the number of cells per partition is 25,000 and 50,000.
The parallel efficiency of the case with the higher number of cells per partition remains
above 60%, while for the other case, it drops to 40% at 4,048 processors. This drop
in efficiency is mainly attributable to the latency of collective communications, which
increases proportional to the number of processors. However, partitioning the grid with
more than 50,000 cells per processor leads to a satisfactory scaling of the problems with
size less than a billion grid points.
The grid associated with the simulation run on eight nodes is refined by a factor of two

in all directions in comparison with that of a single node in Figure 6. However, the parallel
efficiency remains above 90% for the case of 50 k, indicating that the number of iterations
is almost independent from the grid size. This independence is the main advantage of the
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Figure 5. Strong scalability of the multigrid on a uniform grid. Results are related to the
isotropic turbulence simulation on a 2563 grid.
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multigrid in comparison with conventional iterative techniques, in which a degradation
in performance is observed as the grid is refined.
The duct flow computation on a 480 × 320 × 320 non-uniform grid is performed and

the results are reported in Figure 7. The density variation in the entire domain (i.e.,
max(κ)/min(κ)) is approximately 3. We benchmark the results using the BCG, since
the linear system is non-symmetric. For this case with a non-uniform grid, the present
multigrid method scales up to 1012 processors (64 nodes), which corresponds to 48,000
cells per partition. At this number of processors, a 40-time speedup is obtained in com-
parison with a single node simulation.
To establish consistency of these results on various problem sizes, we repeated non-

uniform simulations on 120×80×80 and 240×160×160 grids. In each case, the number
of nodes is scaled proportional to the problem size. The same computations are also
carried out using the multigrid method from the Trilinos package and the internal BCG
(Table 1).
From Table 1, the present multigrid outperforms Trilinos’s multigrid and the BCG by

approximately one and two orders of magnitude, respectively. A solve that takes a second
with the multigrid takes minutes with the BCG. Moreover, the cost ratio increases as
the grid is refined. For Trilinos’s multigrid it increases from 3 to 11 or 3.5 to 14 and for
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Figure 7. Strong scaling of the multigrid solver on a non-uniform grid with variable κ.
Results are related to the duct simulation on a 480× 320× 320 non-uniform grid.

NND CPP Grid Pres. MG Trilinos MG BCG

cost CR ηws cost CR ηws cost CR ηws

1 48 120 × 80× 80 0.94 1 100 2.83 3.0 100 80 85 100
8 48 240× 160× 160 1.25 1 75 8.13 6.5 35 250 200 32
64 48 480× 320× 320 1.37 1 69 15.2 11 19 - - -

2 24 120 × 80× 80 0.47 1 100 1.65 3.5 86 64 135 63
16 24 240× 160× 160 0.62 1 76 5.08 8.1 28 144 231 28
128 24 480× 320× 320 0.81 1 58 11.7 14 12 - - -

Table 1. Weak scaling of the present multigrid method (Pres. MG) and its comparison to the
Trilinos multigrid (Trilinos MG) and an in-house implementation of the BCG. NND and CPP
denote the number of computational nodes and number of cells per partition, respectively. Cost
denotes the absolute value of wall-time for solving a single system of linear equations in seconds.
The cost ratio, CR, is calculated as the cost normalized by the cost of present multigrid. ηws

denotes weak scaling parallel efficiency, using the case run on one node as the reference. The
BCG did not converge on the large grids within 20 minutes, hence results are not reported.

the BCG it increases from 85 to 200 or 135 to 231. This is due to the aforementioned
ill-conditioning of the system, causing these methods to be more expensive. The cost of
the present multigrid method, however, consistent with the results of the uniform grid
(Figure 6), remains fairly constant. Additionally, the present multigrid scales well† when
the number of cells per partition is decreased from 48,000 to 24,000, showing its excellent
weak scalability. This is in comparison with Trilinos’s multigrid and the BCG that show
approximately 20% average drop in efficiency for the same cases.

5. Conclusions

A geometric multigrid method is presented for solving a non-symmetric system of
linear equations that arise from an elliptic PDE operator. This method is constructed

† Except for the largest case in which collective communications hinders the performance.
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by directly exploiting the properties of the underlying PDE. An optimal pattern of re-
striction and interpolations is obtained through a recursive implementation. To improve
parallel scalability, a flexible partitioning approach is employed that finds a nearly op-
timal partitioning, in terms of communication overhead and load balance, for all grids
independent of the level.
Taking the multigrid method from the Trilinos library as reference, the present multi-

grid outperforms it by a factor of approximately 3 on a uniform grid and by up to 14
on non-uniform grids. In comparison with conventional iterative methods, such as the
CG and BCG, the present multigrid reduces the cost by orders of magnitude. Tests on
a wide range of grid sizes show the robustness of the present multigrid against the grid
refinement, i.e., ill-conditioning of the linear system. The scalability studies show re-
markable scaling of the present multigrid to over a thousand processors. On uniform and
non-uniform grids this translates to 16,000 and 48,000 cells per partition, respectively.
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Appendix A. Detailed description of the algorithms

Algorithm 1. Find x =M (A, b,m)

i f m = mmax

x← K (Am, b, ñmax)
return x

x← K (Am, b, nmax)

bf ← b−Amx

wh i l e ‖b‖−1‖bf‖ > ǫ

bc ← C
(

bf
)

xc ←M (A, bc,m+ 1)

xf ← F (xc)

bf ← bf −Amxf

x← x+ xf

xf ← K
(

Am, bf , nmax
)

bf ← bf −Amxf

x← x+ xf

return x

Algorithm 2. Find average number of partitioned grid points n

n← {|lx|, |ly|, |lz|}



A scalable multigrid method for elliptic linear systems 223

do i = |p|, · · · , 1
wh i l e ki > 0

j ← argmax(n)

nj ← p−1
i nj

ki ← ki − 1

return n
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